

PSYC214: Statistics Lecture 5 – Summary Part 1

Michaelmas Term Dr Sam Russell s.russell1@lancaster.ac.uk

Lecture 1 – Measurement, variance and inferential statistics

Agenda/Content

- Experimental science
- Variables
- Descriptive statistics
 - Levels of measurement
 - Measures of central tendency
 - Measures of variability
- Distributions
- Inferential statistics and hypotheses
- Within and between participant designs

Experimental science

Population versus sample

- Population is every individual you are interested in
- The sample is a subset of your population of interest. We examine samples because it is typically impossible to sample everyone in the population

Experimental science

Population versus *sample*

- You should always opt for random sampling, where you pick your sample randomly
- However, in reality, we often use opportunity sampling where we recruit who we have access to

Variables

Independent Variable

 The variable (FACTOR) the experimenter manipulates or changes, which may be assumed to have a direct effect (i.e., influences change) on the dependent variable.

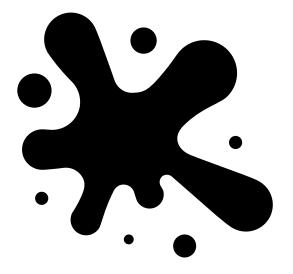
Dependent Variable

 The outcome of interest. It is the variable being tested and measured in an experiment. It is 'dependent' on the effect (i.e., influence) of the independent variable.

Statistics

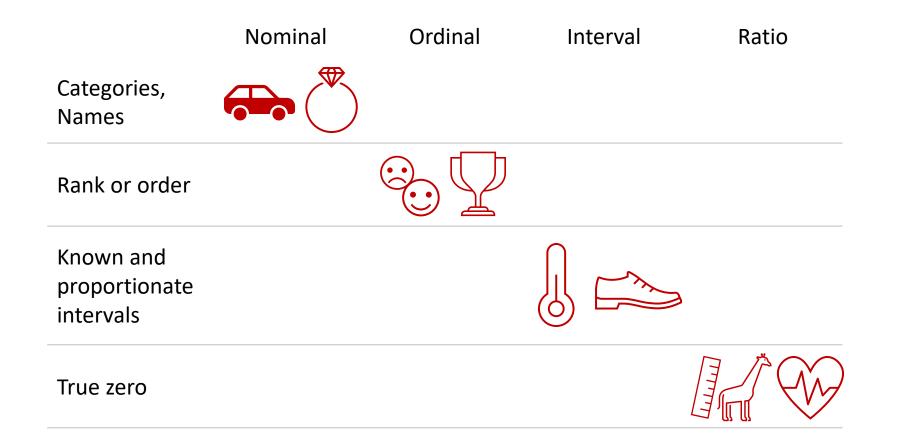
- Use descriptive statistics to describe characteristics and tendencies of your sample
- Use inferential statistics to determine whether the performance and characteristics of your sample generalizes to the population

Descriptive statistics

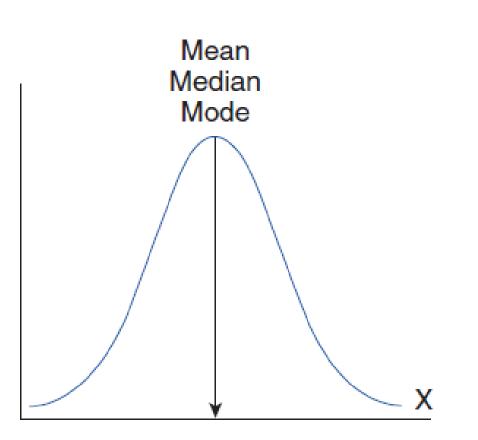


- 1. Levels of measurement
- 2. Measures of central tendency
- 3. Measures of variability

1. Levels of measurement


Nominal, Ordinal, Interval, Ratio

1. Levels of measurement - Examples

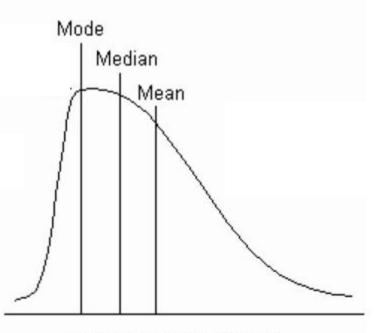


2. Measures of central tendency

A single value that describes the way in which a group of data clusters around a central value, i.e., the centre of the data set

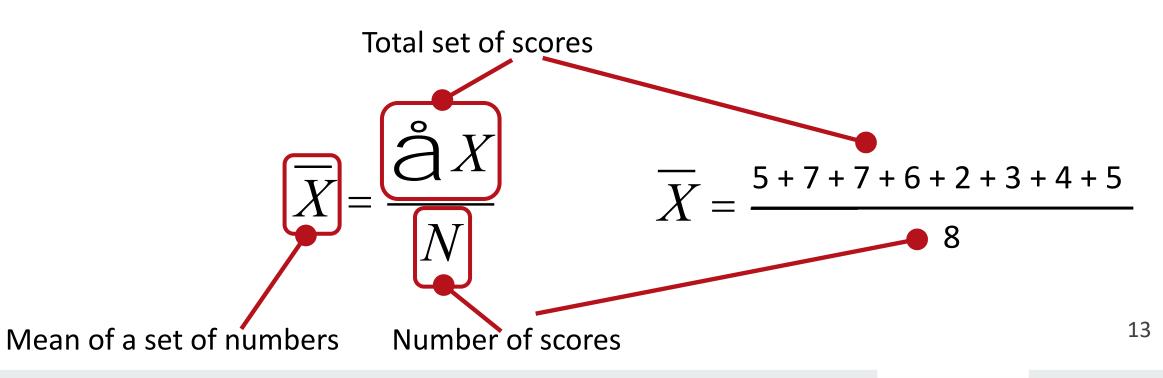
- There are three measures of central tendency
 - Mode
 - Median
 - Mean

2. Measures of central tendency

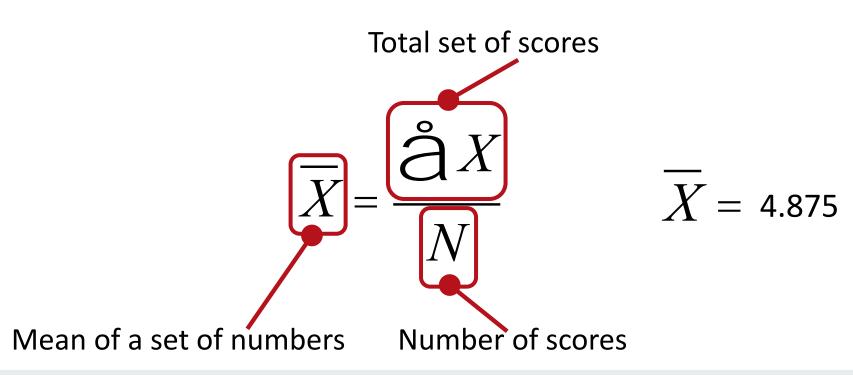

	Nominal	Ordinal	Interval	Ratio
Categories, Names	Mode, % frequencies	Mode, % frequencies	Mode, % frequencies	Mode, % frequencies
Rank or order		Median, percentile	Median, percentile	Median, percentile
Known and proportionate intervals			Mean, standard deviation	Mean, standard deviation
True zero				All above

2. Measures of central tendency - Median

The middle number when data are ordered


- Level of measurement: Ordinal or interval/ratio
- Shape of distribution: Highly skewed

asymmetrical distribution

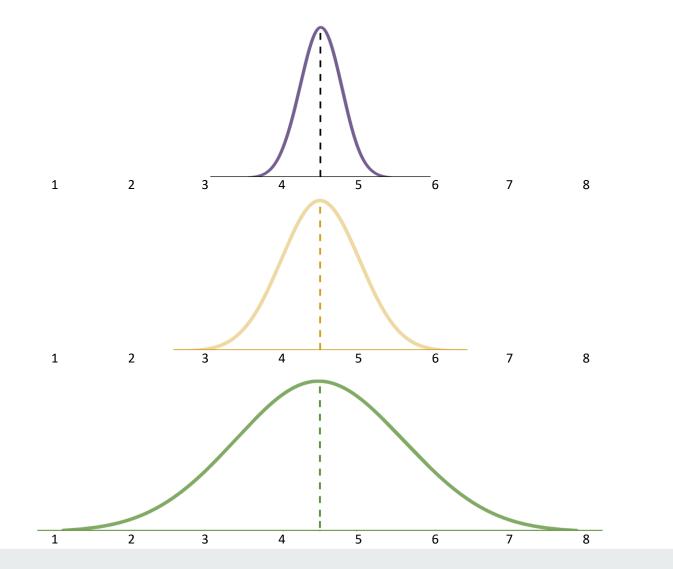

2. Measures of central tendency - Mean (\overline{X}) Lancaster $\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\bullet}{\overset{\bullet}}}}$

The average, i.e., the sum (Σ) of all scores (x) divided by the number of scores (N)

2. Measures of central tendency - Mean (\overline{X}) Lancaster $\overset{\mathbb{Z}}{\overset{$

The average, i.e., the sum (Σ) of all scores (x) divided by the number of scores (N)

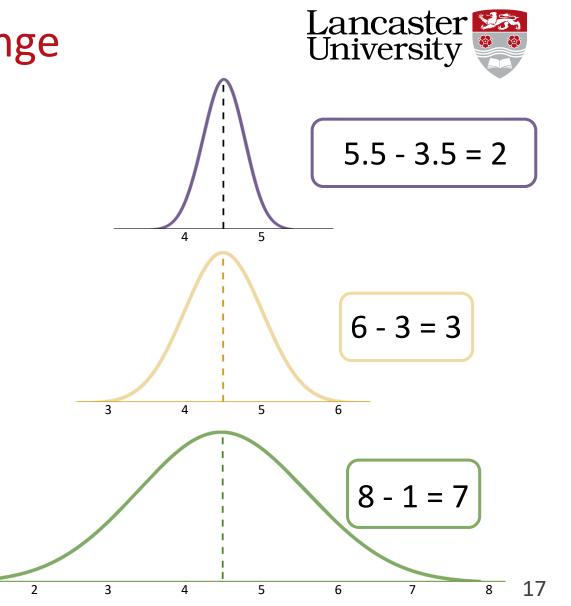
3. Measures of variability



The spread or dispersion of scores in relation to the midpoint of data.

- Range
- Sum of squares
- Variance
- Standard deviation

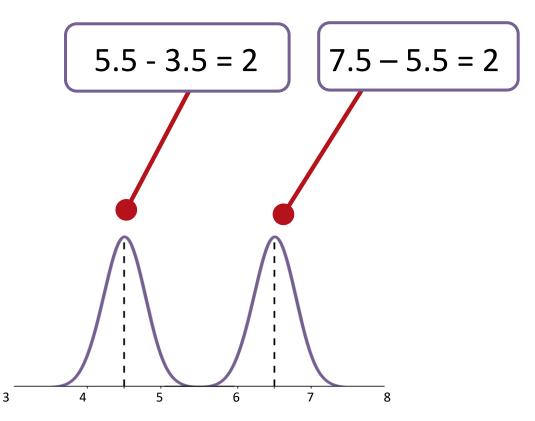
3. Measures of variability - why care?


16

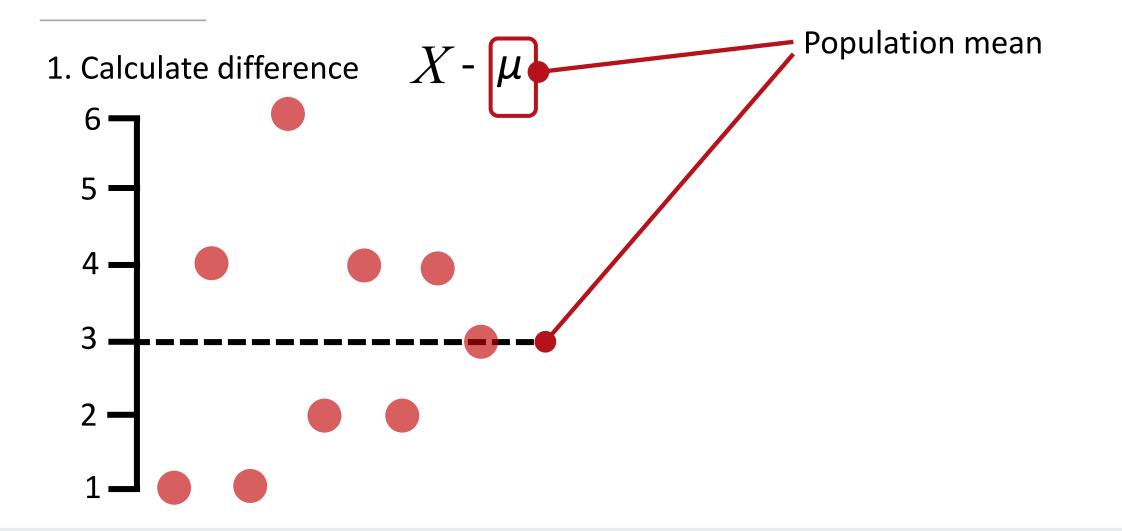
3. Measures of variability - range

1

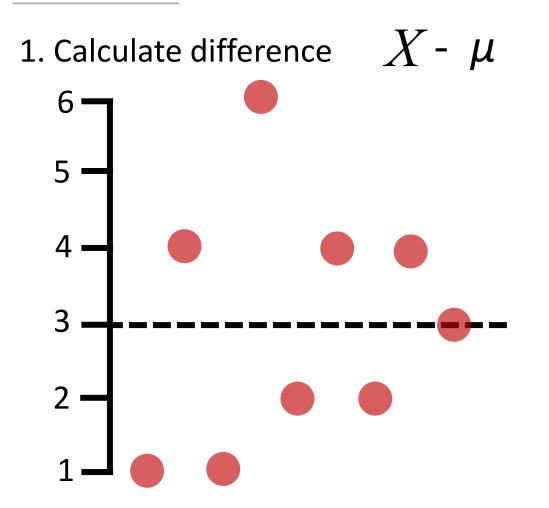
The difference between the highest and lowest score


• Subtract the lowest value in the distribution by the highest value

3. Measures of variability - range



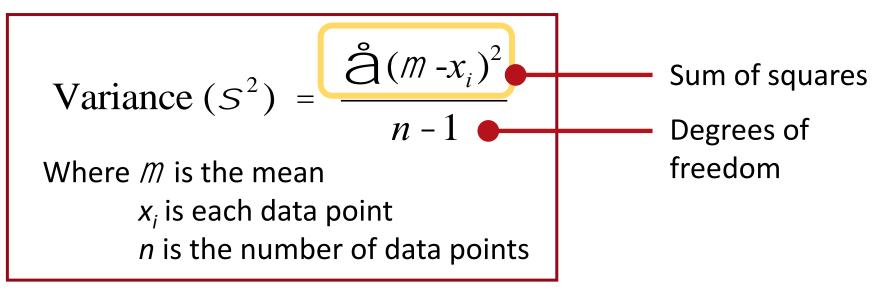
When is it not useful?


3. Measures of variability - sum of squares

3. Measures of variability - sum of squares

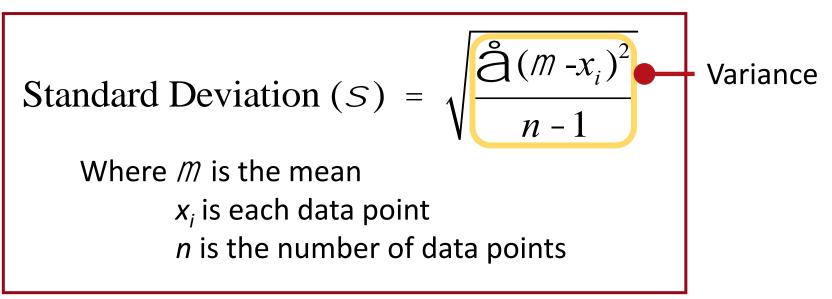
Data point	χ-μ
χ1	-2
χ2	1
χ3	-2
χ4	3
χ5	-1
χ6	1
χ7	-1
χ8	1
χ9	0
Total	0

3. Measures of variability - sum of squares

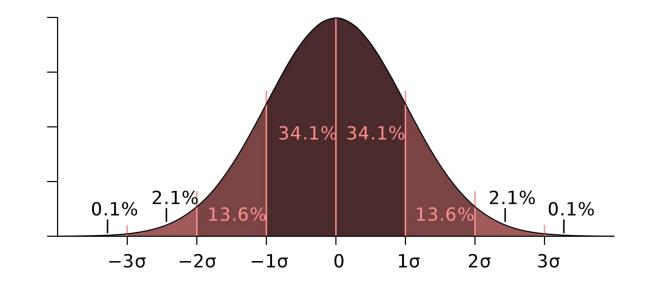


1. Calculate difference $X - \mu$ 2. Calculate the sum of squares Sum of squares (SS) = (SS)is the sum of all data is the population mean is each data point

Data point	χ-μ	(χ - μ)²
χ1	-2	4
χ2	1	1
χ3	-2	4
χ4	3	9
χ5	-1	1
χ6	1	1
χ7	-1	1
χ8	1	1
χ9	0	0
Total	0	22


3. Measures of variability - variance

<u>Variance</u>: Average deviation around the mean of a distribution (average of sum of squares)


3. Measures of variability – standard deviation

 <u>Standard deviation (σ)</u>: Measure of the typical deviation from the mean. It is the squared root of the variance

3. Measures of variability – standard deviation

• <u>Standard deviation (σ)</u>: Measure of the typical deviation from the mean. It is the squared root of the variance

Inferential statistics

- 1. Allow you to draw conclusions based on extrapolations
- 2. Use data from the sample of participants in the experiment to compare the treatment groups and make generalizations about the larger population of participants
- 3. Provide a quantitative method to decide if the null hypothesis (H₀) should be rejected

Inferential statistics - Hypotheses

Ho the Null Hypothesis

- H₀: there is no significant difference between the conditions/groups and the null hypothesis is accepted.
- Under H₀, the samples come from the <u>same</u> population.

H₁ the Experimental Hypothesis

- H1: there is a significant difference between the conditions/groups and the null hypothesis is rejected.
- Under H₁, the samples come from the <u>different</u> populations.

Inferential statistics - (Non)parametric tests

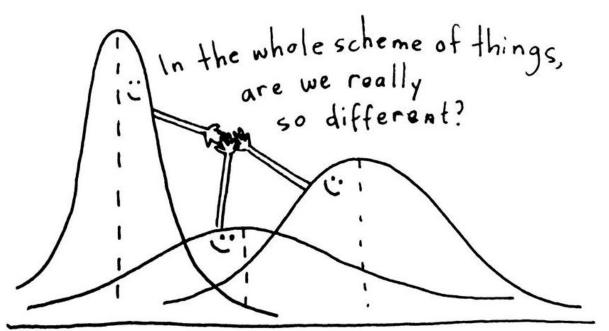
- Statistical tests can be separated into:
 - Parametric
 - Non-parametric

While parametric tests are the norm in psychology and are generally more powerful than non-parametric tests, they require that the scores be an interval or ratio measure and there needs to be <u>homogeneity of variance</u>

One factor between-participants ANOVA

Agenda/Content for Lecture 2

- Introduction to analysis of variance (ANOVA)
- Introduction to one factor betweenparticipants design
- Sources of variability in data
- Calculating within-group and betweengroup variances
- Degrees of Freedom
- Producing the F-statistic



Introduction to analysis of variance

What do you need for a one factor between participants ANOVA?

- Three or more separate groups
- ONE categorical independent variable (i.e., one factor)
- One <u>continuous</u> dependent variable (outcome measure)

Source: Questionpro

Sources of variability in data

- 1. Treatment effects
- 2. Individual differences
- 3. Random (residual) errors

Within-group variability?

Between-group variability?

Treatment effects

- The effects of the independent variable
- This is what we want!
- We want people who are treated differently because of our intervention to behave differently

Lancaster 288

University

Individual differences

- Some individuals may be more proficient in memory recall
- Maybe some individuals have experience of similar tasks
- Some may have ignored instructions or had lower attention spans / motivation
- A control group can employ their own strategy, increasing the variability

Random (residual) errors

- Ideally a participant would have a 'true level' at which they perform, which can always be measured accurately
- 1. Varying external conditions e.g., temperature, time of day
- 2. State of participant (e.g. tired?)
- 3. Experimenter's ability to measure accurately...

... Experimenter effects

- Experimenters need to minimise these, so not to obscure the treatment effect
- Spread data away from the true means – i.e., increase variability and standard errors
- Reduce confidence in our estimates and a randomly plucked sample

Within- and between- group variability

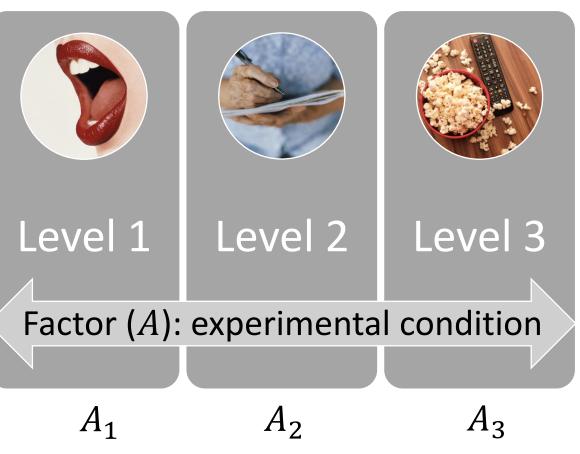
Within-group variability

The extent to which participants within a single group or population differ, despite receiving the same treatment

Within-group variability?

Between-group variability

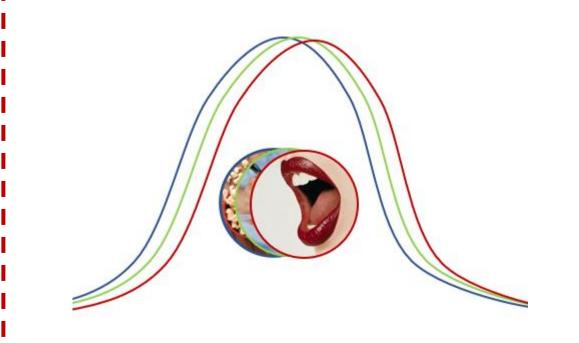
The extent to which overall groups differ from one another (hopefully because of our treatment) * but also Individual differences!


Between-group variability?

Introduction to analysis of variance

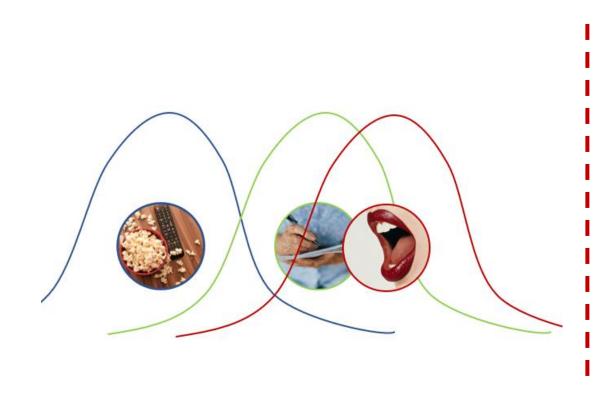
Factors and levels (Example 3)

- Factor: **experimental** condition
- 3 levels:
 - A₁ Verbal negative feedback
 - A₂ Written negative feedback
 - A₃ Control (no feedback)

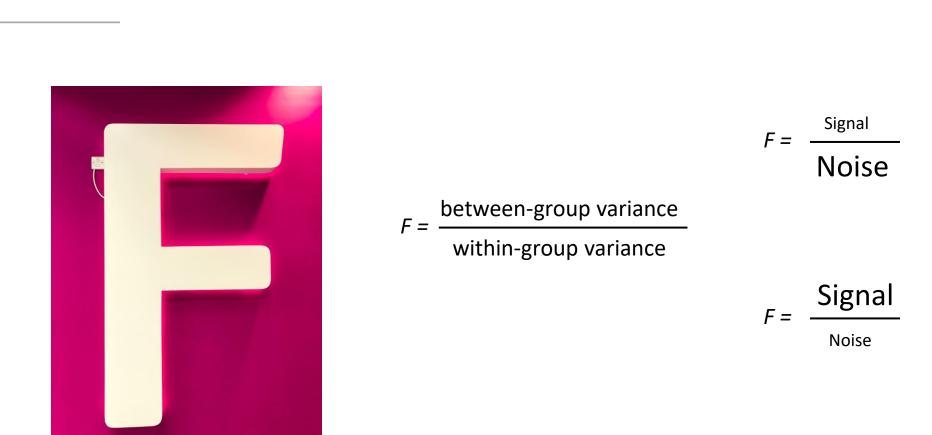


Lancaster 283 University

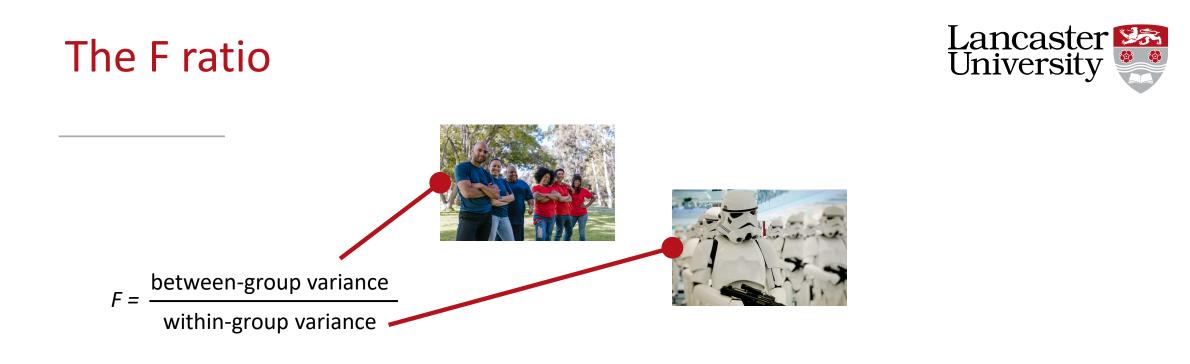
Testing for differences


• Ho the Null Hypothesis

- Under H0, the samples come from the same population
- $\mu_1 = \mu_2 = \mu_3$ [No difference in the population means]
- Experimental effect = 0
- All differences are due to individual differences + random (residual) errors



Testing for differences

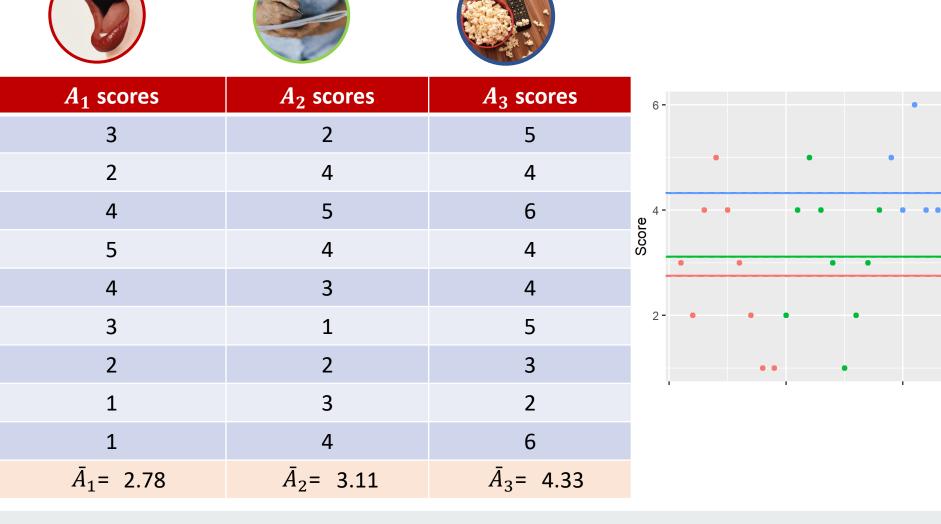


- H1 the Experimental Hypothesis
- Under H1, the samples come from the <u>different</u> populations.
- $\mu_1 \neq \mu_2 \neq \mu_3$ [Population means are different]
- Experimental effect $\neq 0$
- Differences are due to individual differences, random (residual) errors <u>AND</u> the experimental effect

Introduction to analysis of variance

individual differences + random (residual) errors

F = _____


experimental error

Introduction to analysis of variance

The more treatment effects are standing out away from experimental error – i.e., the larger the signal is from the noise, the larger in magnitude the F value. The larger the F, the less likely that differences in scores are caused by chance.

A2 • A3

.

Group

• A1

Grand Mean (\bar{Y})

A ₁ scores	A ₂ scores	A ₃ scores
3	2	5
2	4	4
4	5	6
5	4	4
4	3	4
3	1	5
2	2	3
1	3	2
1	4	6
\bar{A}_1 = 2.78	\bar{A}_2 = 3.11	$\bar{A}_3 = 4.33$

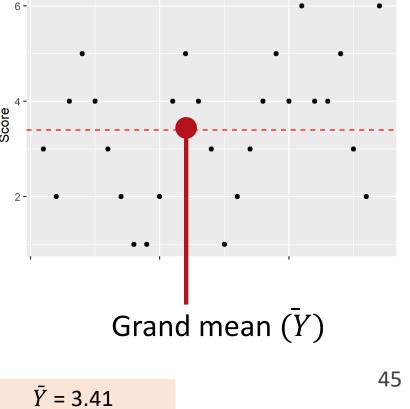
$$\bar{Y} = \frac{\bar{A}_1 + \bar{A}_2 + \bar{A}_3 + \dots \bar{A}_k}{k}$$

$$\bar{Y} = The \ grand \ mean \ of \ averages$$

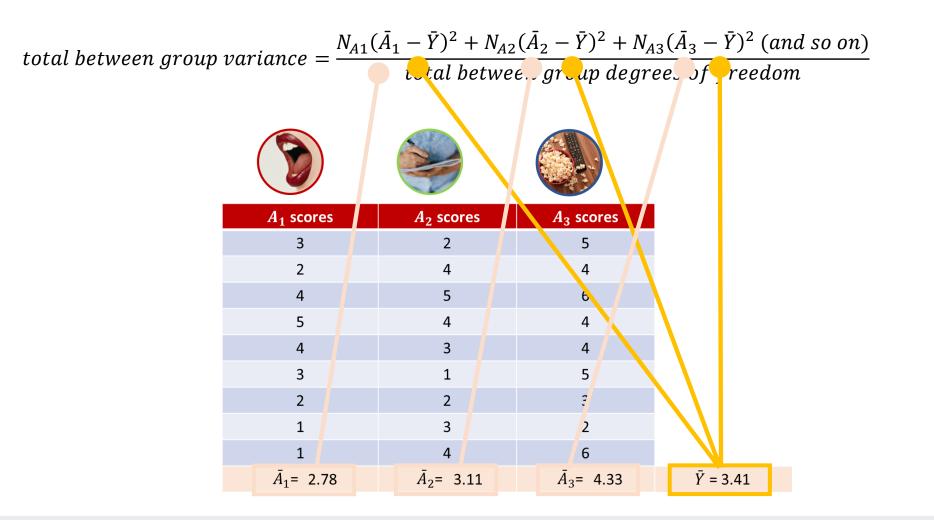
k = number of levels

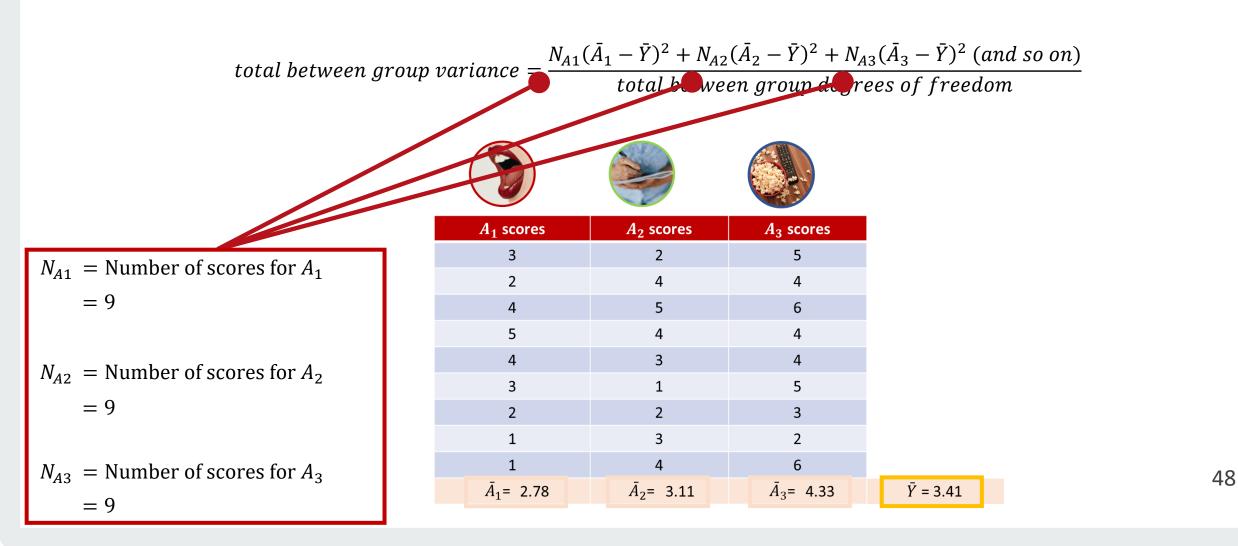
$$\bar{Y} = \frac{2.78 + 3.11 + 4.33}{3}$$
$$\bar{Y} = 3.41$$

Grand Mean (\bar{Y})



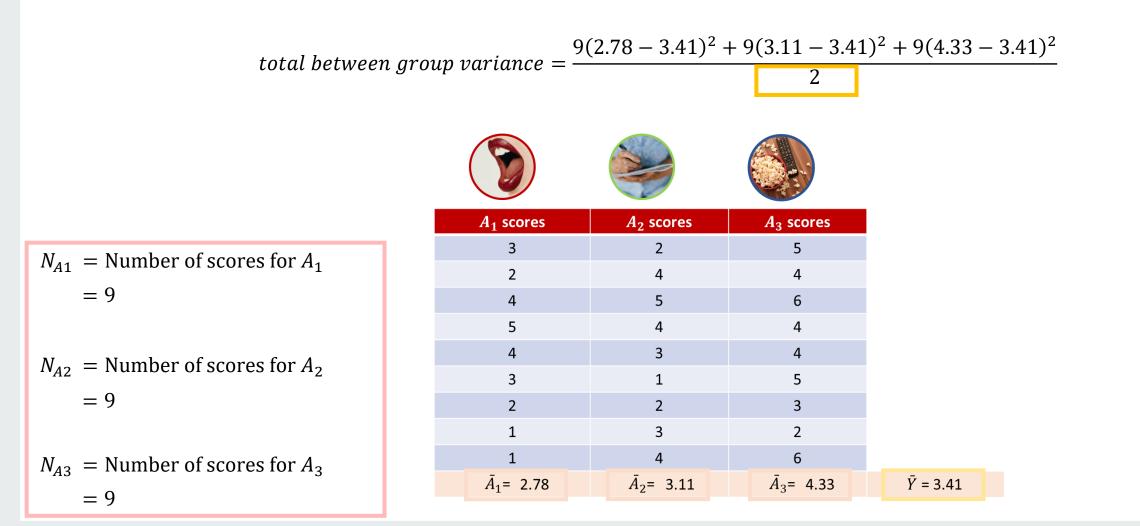
A ₁ scores	A ₂ scores	A ₃ scores	6 -
3	2	5	
2	4	4	4 -
4	5	6	Score
5	4	4	
4	3	4	2 -
3	1	5	,
2	2	3	
1	3	2	
1	4	6	
\bar{A}_1 = 2.78	\bar{A}_2 = 3.11	\bar{A}_3 = 4.33	ý



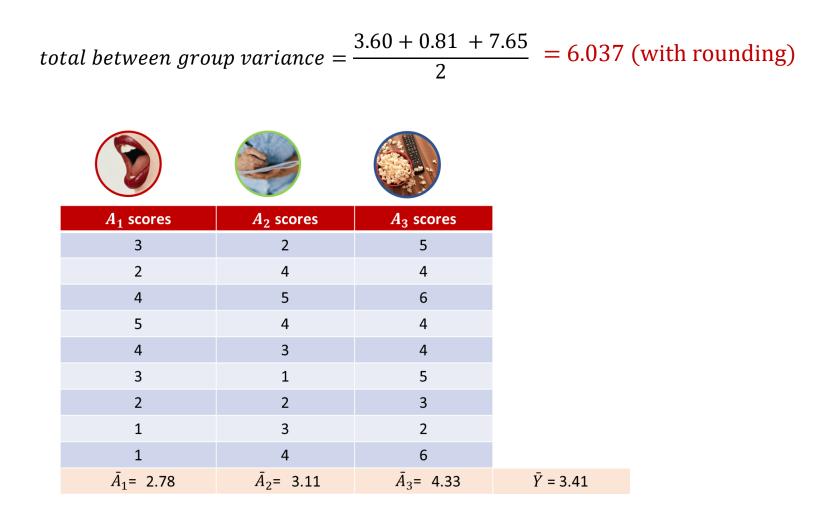

 $total \ between \ group \ variance = \frac{N_{A1}(\bar{A}_1 - \bar{Y})^2 + N_{A2}(\bar{A}_2 - \bar{Y})^2 + N_{A3}(\bar{A}_3 - \bar{Y})^2 \ (and \ so \ on)}{total \ between \ group \ degrees \ of \ freedom}$

A ₁ scores	A ₂ scores	A ₃ scores
3	2	5
2	4	4
4	5	6
5	4	4
4	3	4
3	1	5
2	2	3
1	3	2
1	4	6
\bar{A}_{1} = 2.78	\bar{A}_2 = 3.11	Ā₃= 4.33

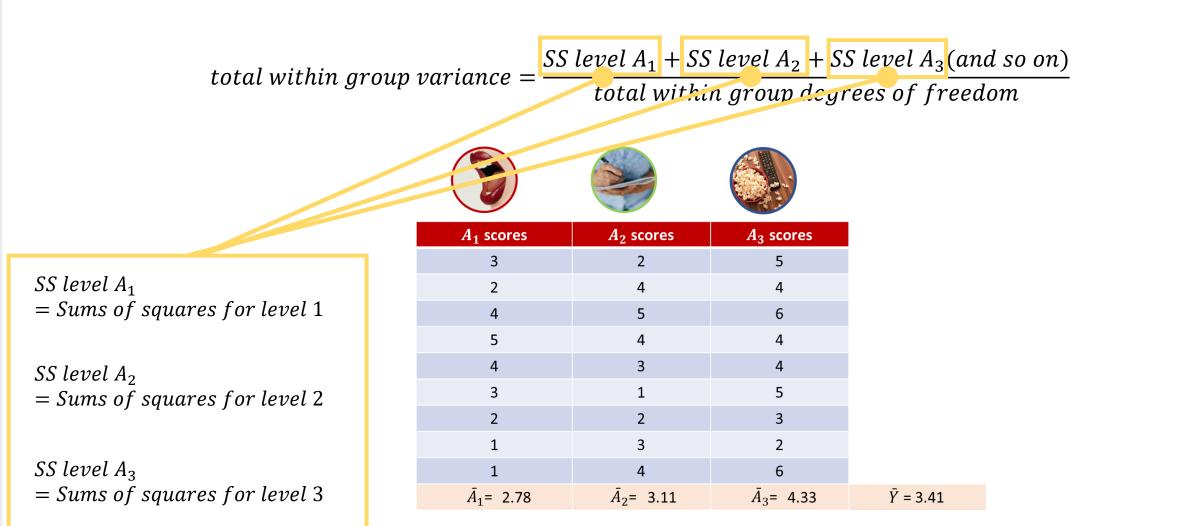
Degrees of freedom


Between-groups degrees of freedom

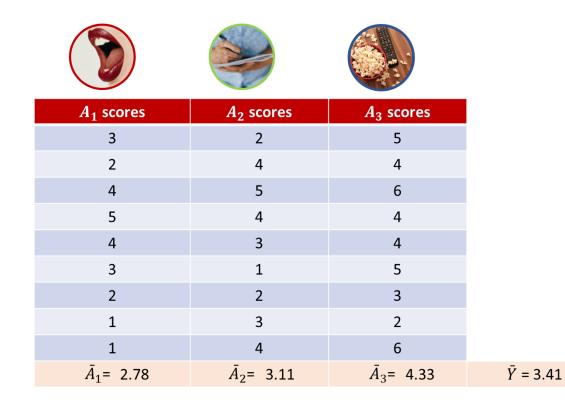
- The total number of levels minus one
- For example, in our experiment we have three levels [verbal feedback, written feedback, control]
- The between-groups degree of freedom is there 3 levels – 1 = 2
- Between-groups df = 2

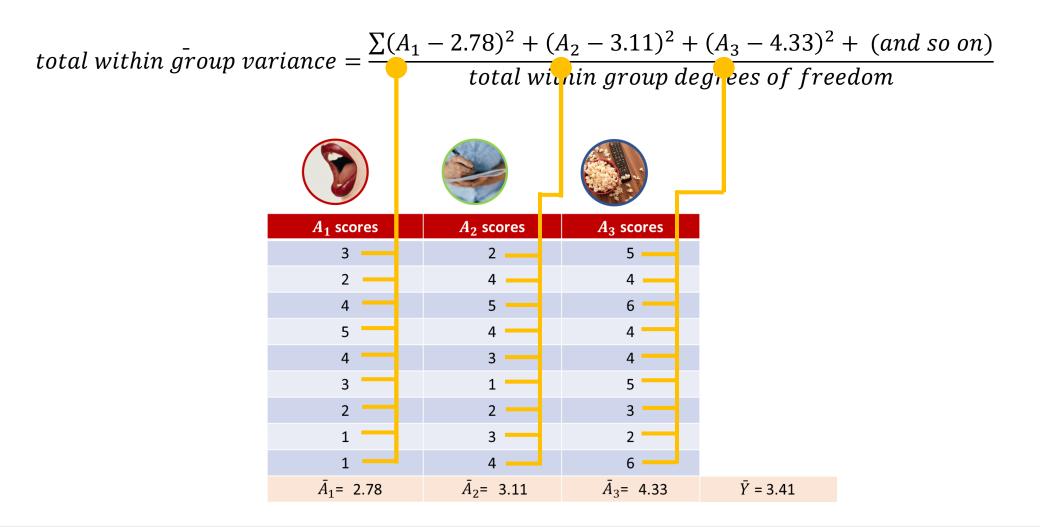


Calculating between-group variance


 $F = \frac{\text{between-group variance}}{\text{within-group variance}}$

 $F = \frac{6.037}{\text{within-group variance}}$


 $total within group variance = \frac{SS \ level \ A_1 + SS \ level \ A_2 + SS \ level \ A_3(and \ so \ on)}{total \ within \ group \ degrees \ of \ freedom}$



total within group variance = $\frac{\sum (A_1 - \bar{A}_1)^2 + (A_2 - \bar{A}_2)^2 + (A_3 - \bar{A}_3)^2 + (and \ so \ on)}{total \ within \ group \ degrees \ of \ freedom}$

Degrees of freedom

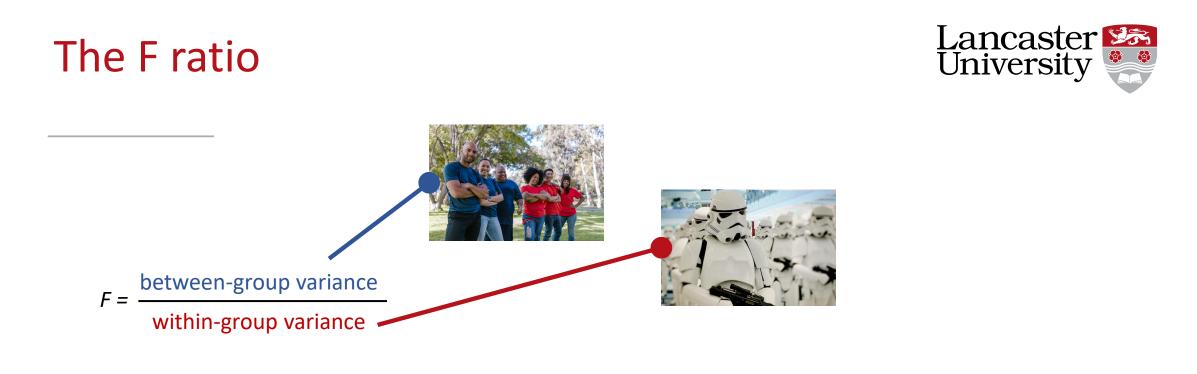


Within-groups degrees of freedom

- For within-groups degrees of freedom, we add up the number of participants for each level – 1
- Mathematically this is expressed as:

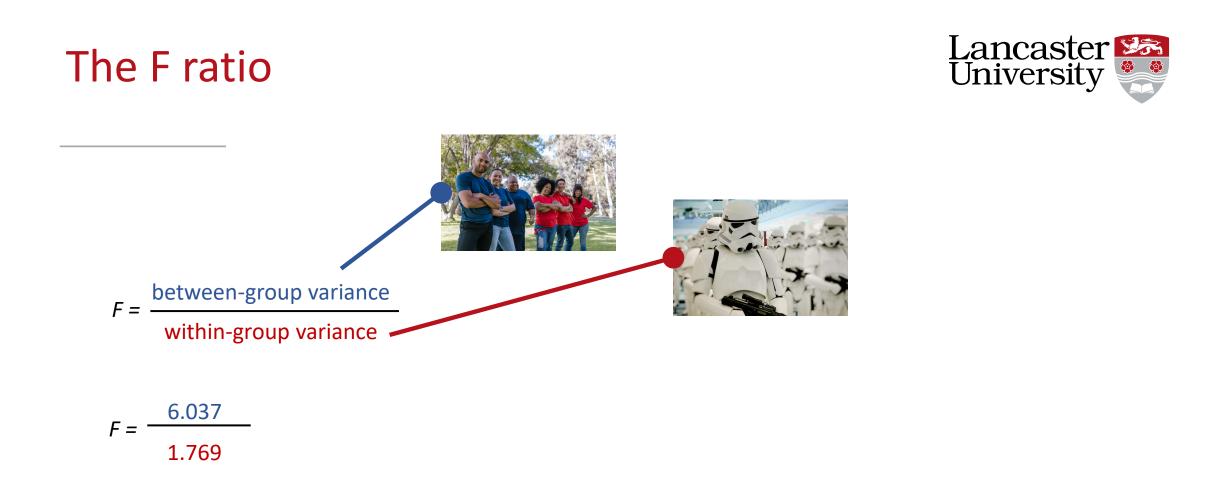
$$= (N_{A1} - 1) + (N_{A2} - 1) + (N_{A3} - 1)$$
$$= (9 - 1) + (9 - 1) + (9 - 1)$$

= 24


total within group variance =
$$\frac{\sum (A_1 - 2.75)^2 + (A_2 - 3.11)^2 + (A_3 - 4.33)^2}{24}$$

A ₁ scores	A ₂ scores	A ₃ scores
3	2	5
2	4	4
4	5	6
5	4	4
4	3	4
3	1	5
2	2	3
1	3	2
1	4	6
\bar{A}_1 = 2.78	\bar{A}_2 = 3.11	<i>Ā</i> ₃= 4.33

total within group variance =
$$\frac{42.444}{24}$$
 = 1.769 (with rounding)


$$F = \frac{6.037}{1.769}$$

F = 3.414

ν_1	4																		
ν_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	~
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	240 19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	5.59	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

F = 3.414, p = 0.05, A statistically significant test result ($P \le 0.05$)

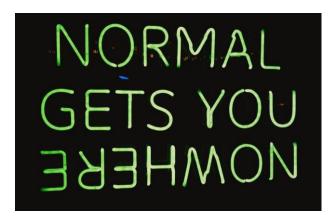
Assumptions of ANOVA and follow-up procedures

Agenda/Content for Lecture 3

- Assumptions of ANOVA
 - Assumption of independence
 - Assumption of normality
 - Assumption of homogeneity of variance
- Data transformations
- Pairwise between-level comparisons
 - Planned comparisons
 - Post-hoc tests

In a perfect world...

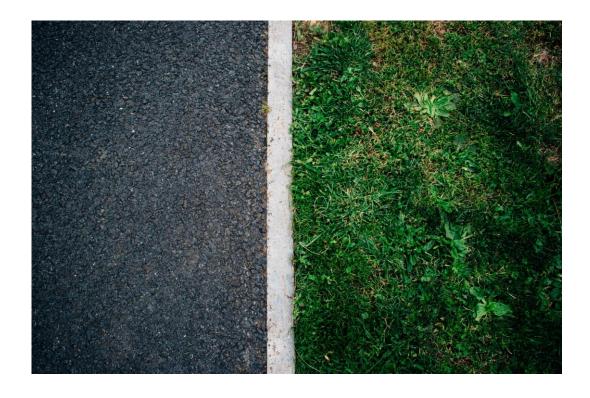
- Normally distributed data
- You would have equal number of participants per level (e.g., per condition)
- Your data would be on an interval/ratio scale


Assumptions underlying the ANOVA

- 1. Assumption of independence
- 2. Assumption of normality
- 3. Assumption of homogeneity of variance

Independence

Normality


Homogeneity of variance

1. Assumption of independence

What is it?

- Participants should be randomly assigned to a group
- Participants should not cluster, sharing a classification variable
 - Gender
 - Skill level
- There should be no influence across one data point to another

1. Assumption of independence

Consequences of violation

- Becomes difficult to interpret results
- Did the manipulation have an effect, or was this driven by classification clustering or influence?

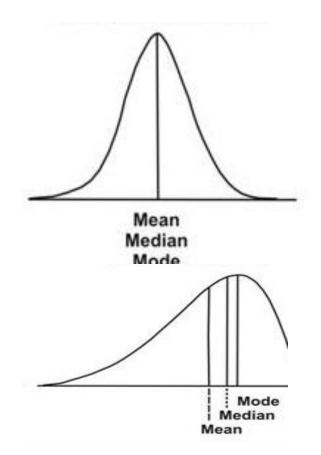
The F-ratio (from week 2!)

 $F = \frac{\text{between-group variance}}{\text{within-group variance}}$

1. Assumption of independence

How to avoid it?

- Always randomly allocate participants to a condition
- Try to allocate equal numbers to each condition
- You can test to see whether you have significant differences on important classification variables

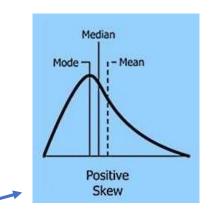


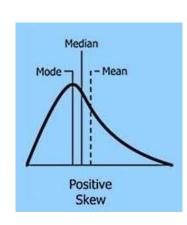
2. Assumption of normality

What is it?

- You want the overall data and the data for each subgroup to normally distributed
- This is because ANOVAs rely on the mean – and for skewed and bimodal data the mean is unlikely the best measure of central tendency

2. Assumption of normality

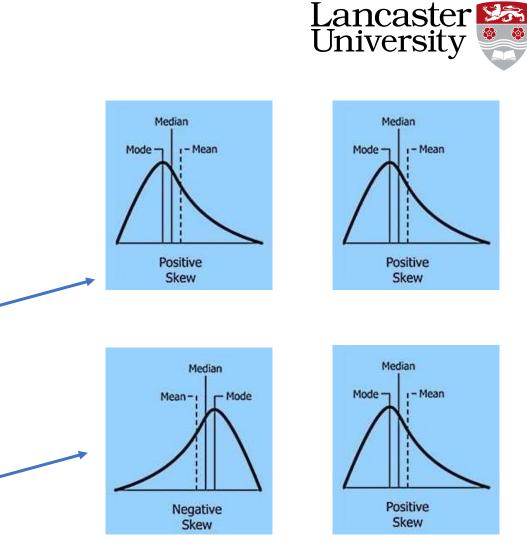

Consequences of violation


 If data are slightly skewed this is unlikely to cause problems

2. Assumption of normality

Consequences of violation

- If data are slightly skewed this is unlikely to cause problems
- If data are skewed by roughly the same degree in the same direction unlikely a problem


Lancaster 588

University

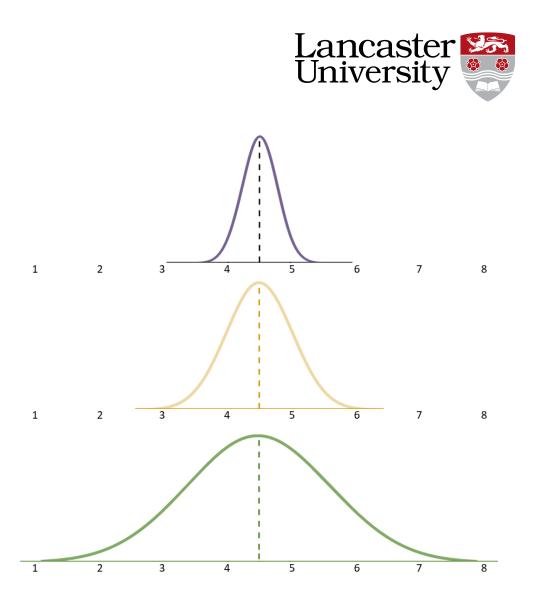
2. Assumption of normality

Consequences of violation

- If data are slightly skewed this is unlikely to cause problems
- If data are skewed by roughly the same degree in the same direction – unlikely a problem
- If skewed in different directions, this is a problem. Lead to type I and II errors!

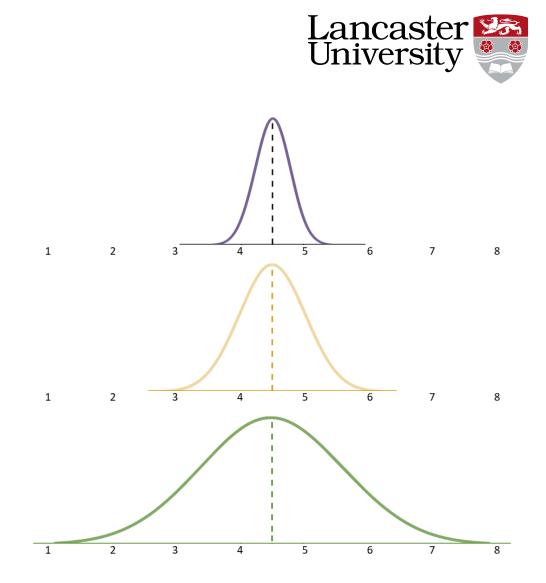
2. Assumption of normality

How to avoid it?


- Avoid measures which often have ceiling or floor effects
- Transform data, changing every score in a systematic way
- Use a robust ANOVA (specialized test – more complex) or nonparametric alternatives: The Kruskal-Wallis Test

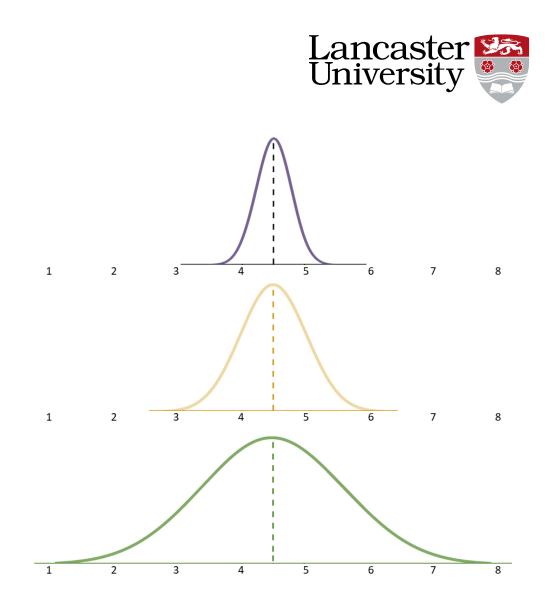
3. Homogeneity of variance

What is it?


- Assumes that the variances of the distributions in the samples are equal
- Therefore the variances for each sample should not significantly vary from one another

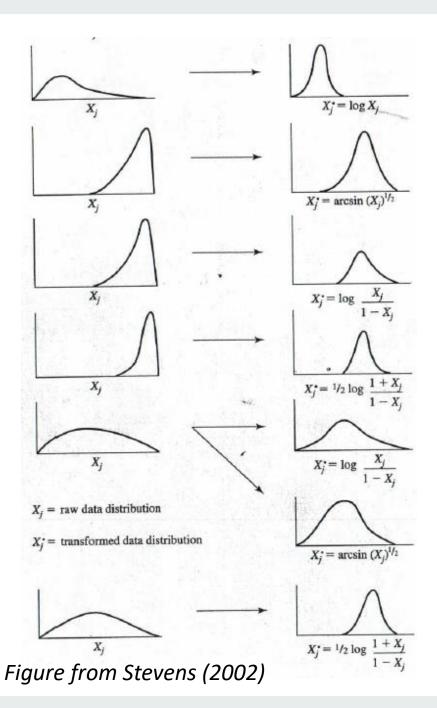
3. Homogeneity of variance

Consequences of violation


- The ANOVA tests the plausibility of the null hypothesis – i.e., all observations come from the same underlying population with the same degree of variability
- This is pointless to test when variance is already clearly different

3. Homogeneity of variance

How to avoid it?


- Difficult to avoid, but can be mitigated when testing
- As a rule of thumb, it is ok, as long as largest variance is no more than 4x the size of smallest
- Can also transform data or use non-parametric alternative

Dealing with 'rogue' data

Transforming data

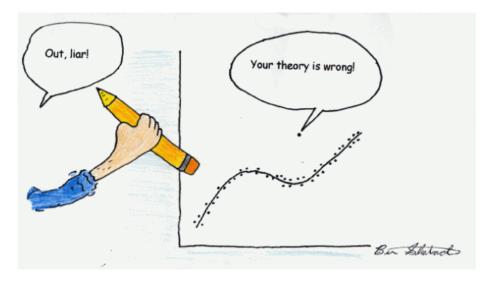
- This involves taking every score from each participant and applying a uniform mathematical function to each
- Report both the original data and the transformed data

Dealing with 'rogue' data

How to transform data

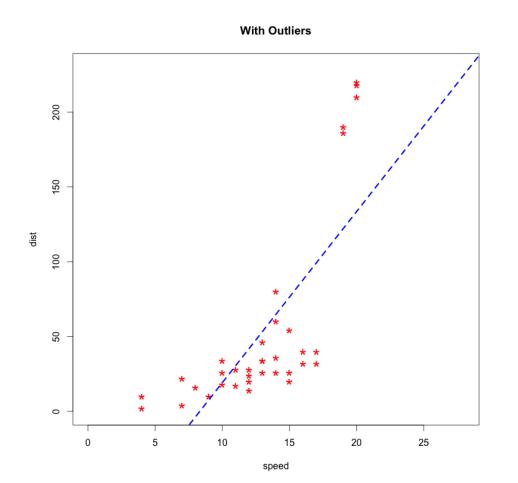
Untransformed	Square-root transformed	Log transformed
38	6.164	1.580
1	1.000	0.000
13	3.606	1.114
2	1.414	0.301
13	3.606	1.114
20	4.472	1.301
50	7.071	1.699
9	3.000	0.954
28	5.292	1.447
6	2.449	0.778
4	2.000	0.602
43	6.557	1.633

http://www.biostathandbook.com/transformation.html


Type of Data	Nature of Data
Transformation	
Log Transformation	Whole numbers and cover wide range of values, small values with decimal fractions.
$(\log(X_i))$	
Square-root	Small whole number &
Transformation	Percentage data where
	the range is between
$(\sqrt{X_i})$	0 and 30 % or
	between 70 and 100
	%

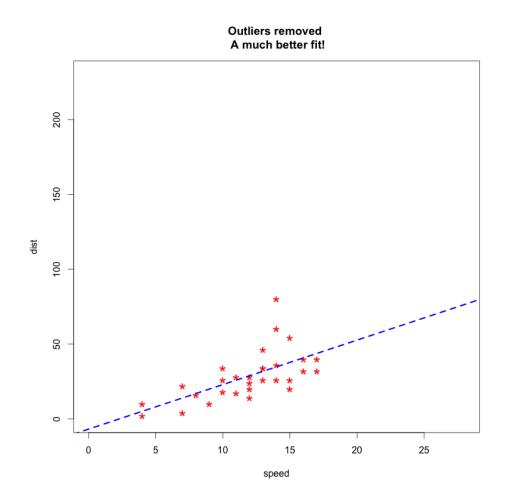
Maidapwad & Sananse (2014)

Outliers and their impact



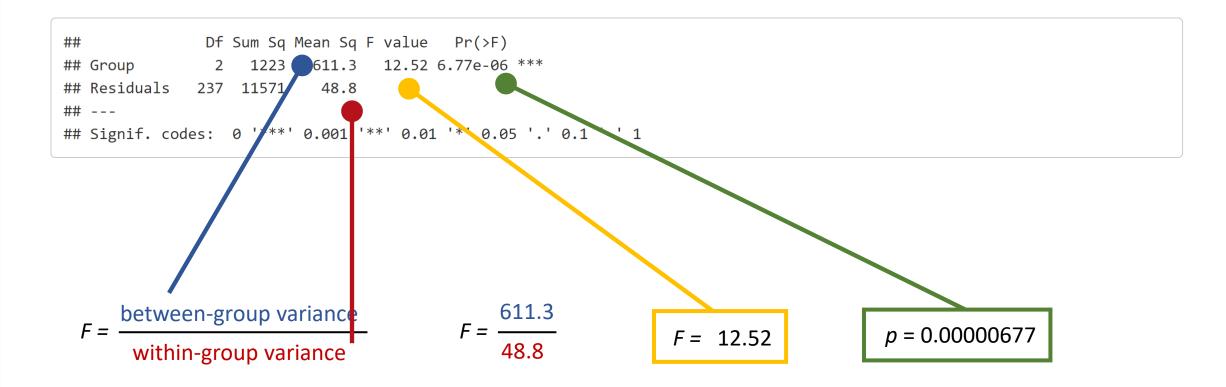
- Outliers are data points which significantly differ from other observations
- Outliers can drastically bias/change predictive models
- Predictions can be exaggerated and present high error
- Outliers not only distort statistical analyses, they can violate assumptions

Outliers and their impact



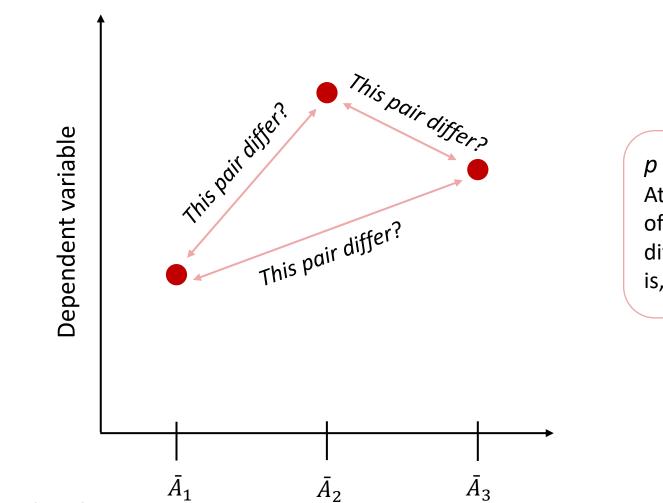
82

Outliers and their impact



- Given the problems outliers create, it may seem levelheaded to remove them
- However, it can be dishonest and misleading to do so if they are true scores
- It must be justifiable as to why it is necessary to remove data

The meaning of an ANOVA output



The meaning of an ANOVA output

P-value	Definition					
> .05	 We accept the null hypothesis (H₀) Under H₀, the samples come from the <u>same</u> population There is no statistical difference in the population means (μ₁ = μ₂ = μ₃) Experimental effect = 0 					
≤ .05	 We reject the null hypothesis (H₁) Under H₁, the samples come from <u>different</u> populations Population means are statistically different (μ₁ ≠ μ₂ ≠ μ₃) Experimental effect ≠ 0 					

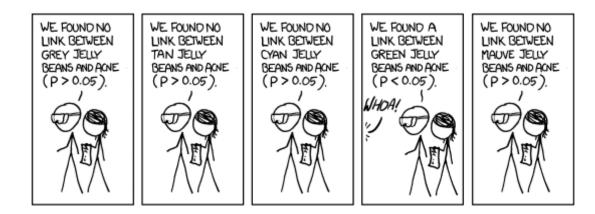
Significant

 $p \le .05$ At least one of the pairs of means is significantly different. The question is, which pairs?

Adapted from Roberts and Russo (1999)

Pairwise comparisons

There are two strategies for following-up significant ANOVAs


- Planned comparisons
- Post-hoc comparisons

The problem of multiple comparisons

- Why not just run a bunch of t-tests?
- Multiple comparisons increase the probability of making a (familywise) type I error
- I.e., rejecting the null hypothesis when actually there was no effect

The problem of multiple comparisons

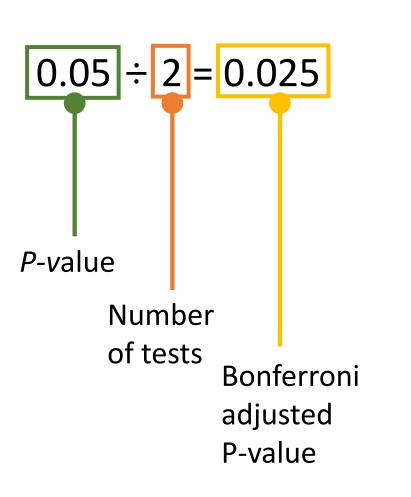
- Type 1 error 1 test at $p \le 0.05 = 0.95$ (i.e., 5% chance we get noise)
- Type 1 error 2 tests = 0.95 * 0.95, = 0.903. (10% chance)
- Type 1 error 3 tests = 0.95 * 0.95 * 0.95 = 0.857 (14% chance)
- Type 1 error 4 tests = 0.95 * 0.95 * 0.95 * 0.95 = 0.815 (18.5% chance)
- Type 1 error 5 tests = 0.95 * 0.95 * 0.95 * 0.95 * 0.95 = 0.774 (22.6% chance)

Planned comparisons

- Focussed approach to examine specific group differences
- Perfect when certain hypotheses can be tested without comparing all combinations of means
- Should be pre-specified
- Need to keep the number of planned comparisons as low as possible to negate Type I errors – (number of levels – 1)

Group	\bar{A}_1	\bar{A}_2	\bar{A}_3	$ar{A}_4$	\bar{A}_5
Ā ₁	-	-	-	-	-
\bar{A}_2		-	-	-	-
\bar{A}_3	•		-	-	-
\bar{A}_4	•			-	-
\bar{A}_5					-

Planned comparisons


Our options:

- 1. Run t-tests with a low number of pairs
- Run t-tests with Bonferroni adjustment
- 3. Specialized linear contrast

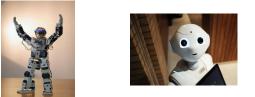
Group	\bar{A}_1	\bar{A}_2	\bar{A}_3	\bar{A}_4	\bar{A}_5
\bar{A}_1	-	-	-	-	-
\bar{A}_2		-	-	-	-
\bar{A}_3			-	-	-
\bar{A}_4	•	•		-	-
\bar{A}_5					-

Planned comparisons – 2. Corrections

- Continue to run t-tests, but adjust the p value to make it more conservative
- Only accept significant if below this threshold
- Bonferroni Correction:
 - A new p-value is generated from the prior significance level divided by the number of tests

Planned comparisons – 1. Run t-tests

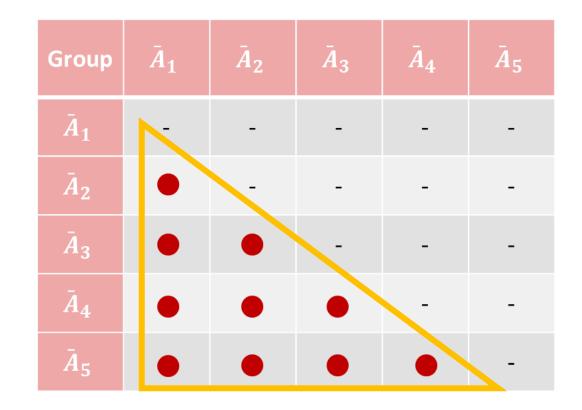
 A_1 - Robot A(lpha)


$$t = \frac{\bar{A}_{1} - \bar{A}_{2}}{\sqrt{(Mean \, Square_{ERROR})\left(\frac{2}{NA}\right)}}$$

 A_2 - Robot B(eta)

Planned comparisons – 2. Corrections

t = -2.94, with 237 degrees of freedom It's significant at p = 0.025 threshold


	Degrees of Freedom	с р=0.05	p=0.025	p=0.01	p=0.005
	1	12.71	25.45	63.66	127.32
	2	4.30	6.20	9.92	14.09
	3	3.18	4.17	5.84	7.45
	4	2.78	3.50	4.60	5.60
	5	2.57	3.16	4.03	4.77
	6	2.45	2.97	3.71	4.32
	7	2.36	2.84	3.50	4.03
	8	2.31	2.75	3.36	3.83
	9	2.26	2.68	3.25	3.69
	10	2.23	2.63	3.17	3.58
	11	2.20	2.59	3.11	3.50
	12	2.18	2.56	3.05	3.43
	13	2.16	2.53	3.01	3.37
	14	2.14	2.51	2.98	3.33
	15	2.13	2.49	2.95	3.29
	16	2.12	2.47	2.92	3.25
	17	2.11	2.46	2.90	3.22
	18	2.10	2.44	2.88	3.20
	19	2.09	2.43	2.86	3.17
	20	2.09	2.42	2.84	3.15
	21	2.08	2.41	2.83	3.14
	22	2.07	2.41	2.82	3.12
	23	2.07	2.40	2.81	3.10
	24	2.06	2.39	2.80	3.09
	25	2.06	2.38	2.79	3.08
	26	2.06	2.38	2.78	3.07
	27	2.05	2.37	2.77	3.06
	28	2.05	2.37	2.76	3.05
	29	2.04	2.36	2.76	3.04
	30	2.04	2.36	2.75	3.03
_	40	2.02	2.33	2.70	2.97
	60	2.00	2.30	2.66	2.92
	120	1.98	2.27	2.62	2.86
	infinity	1.96	2.24	2.58	2.81

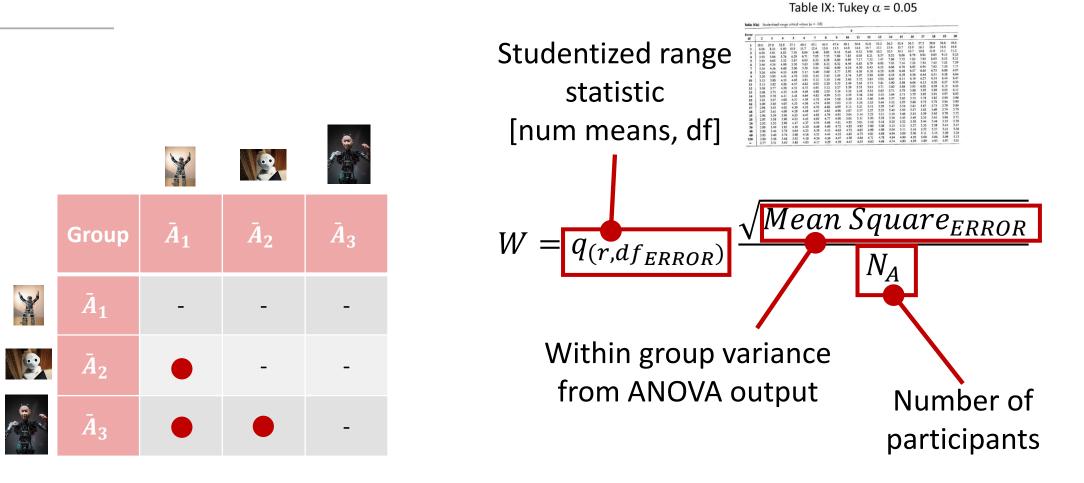
94

Lancaster University

Post hoc tests

- Post hoc comes from Latin for "after the event"
- Post hoc tests assess all possible combinations of differences between groups by comparing each mean with the other
- Make adjustments to p value, but more conservative than Bonferroni correction

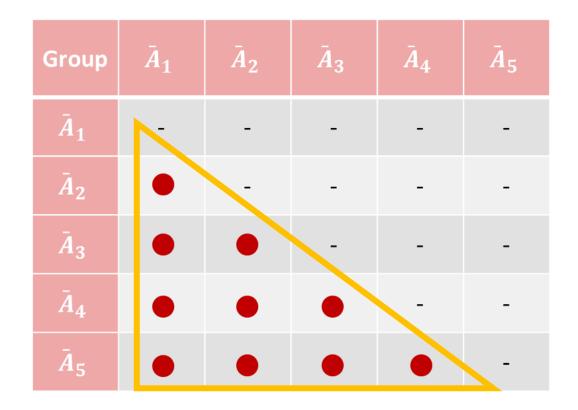
Post hoc tests



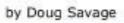
Method	Equal N F	Normality	Use	Error control	Protection
Fisher PLSD	Yes	Yes	Yes	All	Most sensitive to Type 1
Tukey-Kramer HSD	No	Yes	Yes	All	Less sensitive to Type 1 than Fisher PLSD
Spjotvoll-Stoline	No	Yes	Yes	All	As Tukey-Kramer
Student-Newman Keuls (SNK)	Yes	Yes	Yes	All	Sensitive to Type 2
Tukey-Compromise	No	Yes	Yes	All	Average of Tukey and SNK
Duncan's Multiple Range	No	Yes	Yes	All	More sensitive to Type 1 than SNM
Scheffé's S	Yes	No	No	All	Most conservative
Games/Howell	Yes	No	No	All	More conservative than majority
Dunnett's test	No	No	No	T/C	More conservative than majority
Bonferroni	No	Yes	Yes	All, TC	Conservative

https://www.researchgate.net/profile/Cyril-Iaconelli/post/The_choice_of_post-hoc_test/

Post hoc tests – Tukey-Kramer HSD



Post hoc tests – Tukey-Kramer HSD



Take home message:

- As you add more and more mean comparisons, you require larger critical values (q) in the standardized table to find a statistical difference!
- As such, test what you need, not what you don't!

Savage Chickens

ARE MULTIPLE CHOICE EXAMS AN ACCURATE MEASURE OF ONE'S KNOWLEDGE? Dove Savace A. YES B. A AND C C. A AND B 2 D. ALL OF THE Pool ABOVE 3

www.savagechickens.com

One factor within-participants ANOVA

Agenda/Content for Lecture 4

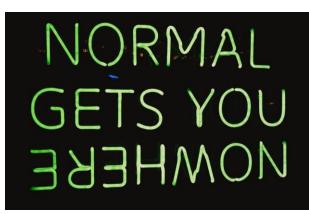
- Introduction to one factor withinparticipants ANOVA and its limitations
- Between-participant variability and residual variance
- Calculating within-group and between group variances
- Producing the within-participants F-statistic

Within-participants

Within-participants design - limitations

		Туре	Definition	An example
ſ	Order	Practice effects	The experience/performance on a task at a given point in time, may influence your performance of that task at a subsequent time.	
	effects	Fatigue effects	Fatigue or boredom with a task may influence your performance of that task at a subsequent time.	
		Demand characteristic	Participants form an idea of the experiment's purpose and (sub)consciously change their behaviour to comply	

Assumptions underlying the W-P ANOVA



- 1. Assumption of independence
- 2. Assumption of normality
- 3. Assumption of **sphericity**

The variances of the differences between all combinations of related groups are equal

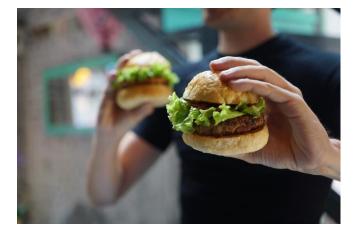
Independence

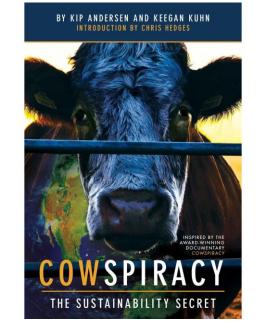
Within-participants F ratio

 $F = \frac{\text{between-group variance}}{\text{within-group variance}}$

random (residual) errors

The F ratio





The larger in magnitude the F value, the more treatment effects are standing out away from experimental error – i.e., the larger the signal is from the noise. The larger the F, the less likely that differences in scores are caused by chance.

A within-participants example

Summary

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy						
	A1	A2	ΔA	P Mean		
P1	5	3	-2	4		
P2	9	7	-2	8		
Рз	3	1	-2	2		
P4	7	5	-2	6		
P 5	4	6	2	5		
A Mean	5.6	4.4		5		

High between-participant variability / Low residual variance

A1			
, , , ±	A2	ΔA	P Mean
9	1	-8	5
5	5	0	5
4	6	2	5
6	4	-2	5
4	6	2	5
5.6	4.4		5
	5 4 6 4 5.6	5 1 5 5 4 6 6 4 4 6 5.6 4.4	5 5 0 4 6 2 6 4 -2 4 6 2

Low between-participant variability / **High** residual variance

Ingredients of within-participants ANOVA

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$$SS_{BETWEEN} = \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A} - \frac{(\Sigma Y)^2}{N}$$

$$SS_{WITHIN} = \Sigma Y^2 - \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A}$$

$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

108

SS-Between groups

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A}$ - $(\Sigma Y)^2$ Ν

SS-Between groups

Participant	A ₁ scores	A ₂ scores	A ₃ scores	
1	2	3	5	
2	1	4	4	
3	3	5	6	
4	2	6	5	
5	2	3	3	
6	1	5	6	
7	4	7	7	
8	3	3	6	
9	2	5	6	
Total	20	41	48	

$SS_{BETWEEN} =$	$\frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_2)^2}{N_A}$	$\frac{(\Sigma Y)^2}{N} - \frac{(\Sigma Y)^2}{N}$
$SS_{BETWEEN} =$	$\frac{(20)^2 + (41)^2 + (48)^2}{9}$	(109) ² 27
$SS_{BETWEEN} =$	<u>400 + 1681 + 2304</u> 9	_ <u>11881</u> 27
$SS_{BETWEEN} =$	44.44 + 186.77 + 256.0	00 – 440.03

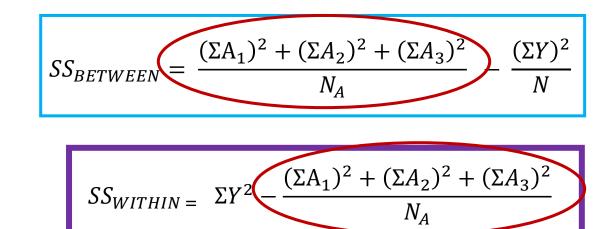
 $SS_{BETWEEN} = 487.21 - 440.03$

 $SS_{BETWEEN} =$ 47.18

110

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$$SS_{BETWEEN} = 47.18$$


$$SS_{WITHIN} = \Sigma Y^2 - \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A}$$

$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$SS_{WITHIN} = \sum Y^{2} - \frac{(\Sigma A_{1})^{2} + (\Sigma A_{2})^{2} + (\Sigma A_{3})^{2}}{N_{A}}$ $SS_{WITHIN} = 523 - \frac{(20)^{2} + (41)^{2} + (48)^{2}}{9}$ $SS_{WITHIN} = 523 - \frac{400 + 1681 + 2304}{9}$

SS_{WITHIN} = 523 - 487.21

 $SS_{WITHIN} = 35.79$

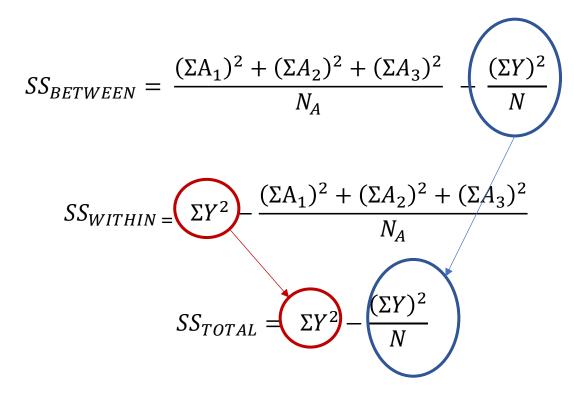
SS-Within group

Participant	A_{1^2} so	core	S	A ₂ ² scores			A ₃ ² scores		
1	2² :	: 4		3² =	9		5² =	25	
2	1² :	1		4² =	16		4² =	16	
3	3² :	9		5² =	25		6² =	36	
4	2² :	: 4		6² =	36		5² =	25	
5	2² :	: 4		3² =	9		3²	= 9	
6	1²=	1		5² =	25		6² =	36	
7	4² =	16		7² =	49		7² =	49	
8	3² :	9		3² =	9		6² =	36	
9	2² :	: 4		5² =	25		6² =	36	
Total	20		42	1		4	8		

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = 47.18$

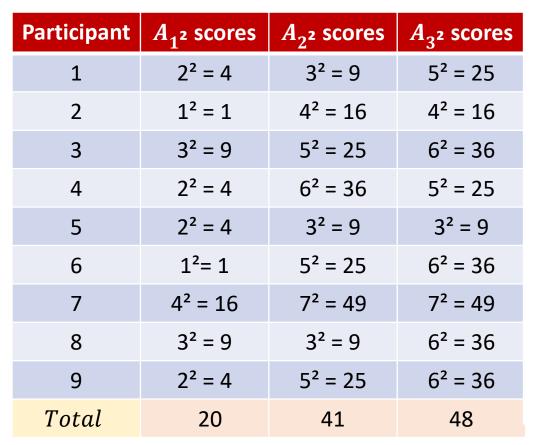
 $SS_{WITHIN} = 35.79$


$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

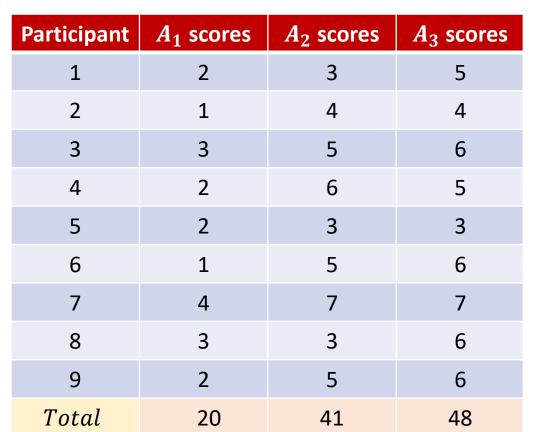
$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

$$SS_{TOTAL} = 523 - \frac{(109)^2}{27}$$


$$SS_{TOTAL} = 523 - \frac{11881}{27}$$

 $SS_{TOTAL} = 523 - 440.03$

 $SS_{TOTAL} = 82.97$



Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = 47.18$

 $SS_{WITHIN} = 35.79$

 $SS_{TOTAL} = 82.97$

 $SS_{BETWEEN} = 47.18$

 $SS_{WITHIN} = 35.79$

 $SS_{TOTAL} = 82.97$

	$(\Sigma P_1)^2 + (\Sigma P_2)^2$ (and so on)	$(\Sigma Y)^2$
$55_{between \ participants} =$	$\overline{N_P}$	\overline{N}

118

SS-be	etween	partic	ipants	$SS_{between \ participants} = \frac{(\Sigma P_1)^2 + (\Sigma P_2)^2 (and \ so \ on)}{N_p} \frac{(\Sigma Y)^2}{N}$
Participant	A ₁ scores	A ₂ scores	A ₃ scores	P total
1	2	3	5	10
2	1	4	4	9
3	3	5	6	14
4	2	6	5	13
5	2	3	3	8
6	1	5	6	12
7	4	7	7	18
8	3	3	6	12
9	2	5	6	13
Total	20	41	48	109 119

 $(\Sigma Y)^2$

Ν

 $(\Sigma P_1)^2 + (\Sigma P_2)^2$ (and so on)

 N_P

SS-between participants

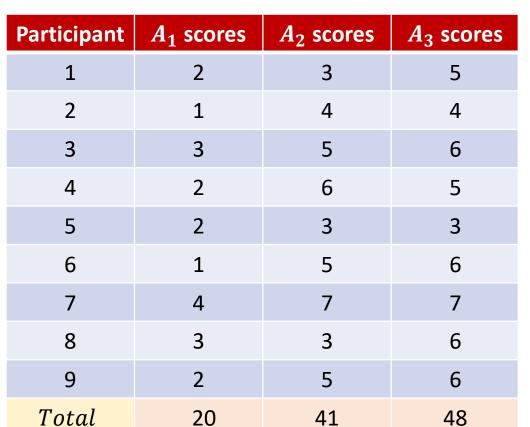
Participant	A ₁ scores	A ₂ scores	A ₃ scores	P total	
1	2	3	5	10	$(10^2 \ 9^2 \ 14^2 \ 13^2 \ 8^2 \ 12^2 \ 18^2 \ 12^2 \ 13^2)$ (109) ²
2	1	4	4	9	$\left(\frac{10^2}{3} + \frac{9^2}{3} + \frac{14^2}{3} + \frac{13^2}{3} + \frac{8^2}{3} + \frac{12^2}{3} + \frac{18^2}{3} + \frac{12^2}{3} + \frac{12^2}{3} + \frac{13^2}{3}\right) - \frac{(109)^2}{27}$
3	3	5	6	14	
4	2	6	5	13	$\left(\frac{100}{3} + \frac{81}{3} + \frac{196}{3} + \frac{169}{3} + \frac{64}{3} + \frac{144}{3} + \frac{324}{3} + \frac{144}{3} + \frac{169}{3}\right) - \frac{(109)^2}{27}$
5	2	3	3	8	
6	1	5	6	12	(33.33 + 27 + 65.33 + 56.33 + 21.33 + 48 + 108 + 48 + 56.33)
7	4	7	7	18	- 440.03
8	3	3	6	12	463.67 - 440.03
9	2	5	6	13	= 23.64
Total	20	41	48	109	120

 $SS_{between \ participants} =$

Participant	A ₁ scores	A ₂ scores	A ₃ scores			
1	2	3	5			
2	1	4	4			
3	3	5	6			
4	2	6	5			
5	2	3	3			
6	1	5	6			
7	4	7	7			
8	3	3	6			
9	2	5	6			
Total	20	41	48			

 $SS_{BETWEEN} = 47.18$

$$SS_{WITHIN} = 35.79$$


 $SS_{TOTAL} = 82.97$

$$SS_{between \ participants} = 23.64$$

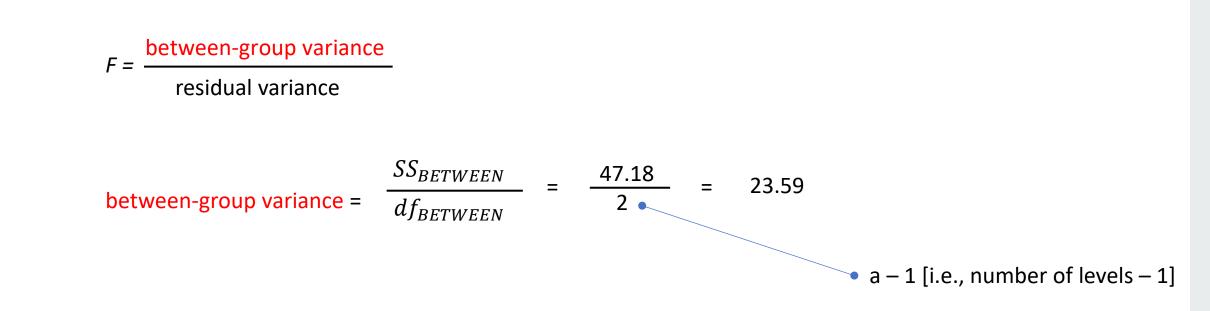
SS_{RESIDUAL}

 $SS_{RESIDUAL} = SS_{WITHIN} - SS_{between participants}$ 12.15 = 35.79 - 23.64

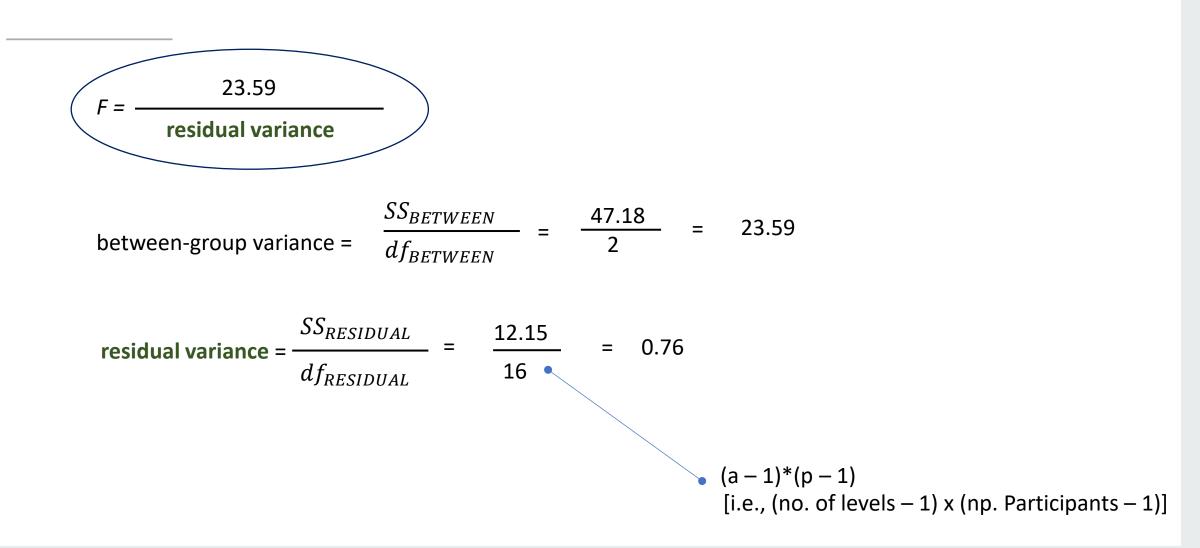
 $SS_{BETWEEN} = 47.18$

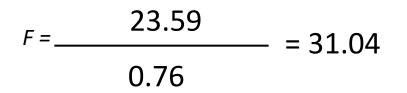
 $SS_{WITHIN} = 35.79$

 $SS_{TOTAL} = 82.97$


 $SS_{between \, participants} = 23.64$

 $SS_{RESIDUAL}$ = 12.15





	DF1	α = 0.05																	
DF2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120 Inf	
1	161.45	199.5	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.1	251.14	252.2	253.25	254.31
2	18.513	19	19.164	19.247	19.296	19.33	19.353	19.371	19.385	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.572	8.5494	8.5264
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.717	5.6877	5.6581	5.6281
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.365
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.913	2.845	2.774	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536	2.7876	2.7186	2.6464	2.609	2.5705	2.5309	2.4901	2.448	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.341	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.463	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	2 6922	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.494	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.81	2.6987	2.6143	2.548	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.104	2.0584	2.0107	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.308	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.878
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.599	2.514	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366	2.321	2.2504	2.1757	2.096	2.054	2.0102	1.9645	1.9165	1.8657	1.8117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.8894	1.838	1.7831
23	4.2793	3.4221	3.028	2.7955	2.64	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.005	1.9605	1.9139	1.8648	1.8128	1.757
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.939	1.892	1.8424	1.7896	1.733
25	4.2417	3.3852	2.9912	2.7587	2.603	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.711
26	4.2252	3.369	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.901	1.8533	1.8027	1.7488	1.6906
27	4.21	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	4.196	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236	2.19	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	4.183	3.3277	2.934	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205		2.2662	2.2107	2.1646		2.0148	1.9317	1.8874	1.8409				1.6223
40	4.0847	3.2317	2.8387	2.606	2.4495	2.3359	2.249	2.1802	2.124	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928			1.5089
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.097	2.0401	1.9926	1.9174	1.8364	1.748	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120		3.0718	2.6802	2.4472	2.2899	2.175		2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.429		1.2539
Inf	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.394	1.318	1.2214	1

Well done!

